
Autotyping

Convenient features for text that you enterfrequently in Emacs

Daniel Pfeiffer
additions by Dave Love

Copyright c© 1994, 1995, 1999 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being “The GNU Manifesto”,
“Distribution” and “GNU GENERAL PUBLIC LICENSE”, with the Front-Cover texts
being “A GNU Manual”, and with the Back-Cover Texts as in (a) below. A copy of the
license is included in the section entitled “GNU Free Documentation License” in the Emacs
manual.
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify this GNU
Manual, like GNU software. Copies published by the Free Software Foundation raise funds
for GNU development.”
This document is part of a collection distributed under the GNU Free Documentation
License. If you want to distribute this document separately from the collection, you can do
so by adding a copy of the license to the document, as described in section 6 of the license.

Autotyping 1

Autotyping

Under certain circumstances you will find yourself typing similar things over and over
again. This is especially true of form letters and programming language constructs. Project-
specific header comments, flow-control constructs or magic numbers are essentially the same
every time. Emacs has various features for doing tedious and repetitive typing chores for you
in addition to the Abbrev features (see 〈undefined〉 [(emacs)Abbrevs], page 〈undefined〉).

One solution is using skeletons, flexible rules that say what to insert, and how to do it.
Various programming language modes offer some ready-to-use skeletons, and you can adapt
them to suit your needs or taste, or define new ones.

Another feature is automatic insertion of what you want into empty files, depending
on the file-name or the mode as appropriate. You can have a file or a skeleton inserted,
or you can call a function. Then there is the possibility to have Un*x interpreter scripts
automatically take on a magic number and be executable as soon as they are saved. Or
you can have a copyright notice’s year updated, if necessary, every time you save a file.
Similarly for time stamps in the file.

URLs can be inserted based on a word at point. Flexible templates can be defined for
inserting and navigating between text more generally. A sort of meta-expansion facility can
be used to try a set of alternative completions and expansions of text at point.

Chapter 1: Using Skeletons 2

1 Using Skeletons

When you want Emacs to insert a form letter or a typical construct of the programming
language you are using, skeletons are a means of accomplishing this. Normally skeletons
each have a command of their own, that, when called, will insert the skeleton. These
commands can be issued in the usual ways (see 〈undefined〉 [(emacs)Commands], page 〈un-
defined〉). Modes that offer various skeletons will often bind these to key-sequences on the
C-c prefix, as well as having an Insert menu and maybe even predefined abbrevs for them
(see Chapter 3 [Skeletons as Abbrevs], page 4).

The simplest kind of skeleton will simply insert some text indented according to the
major mode and leave the cursor at a likely place in the middle. Interactive skeletons may
prompt you for a string that will be part of the inserted text.

Skeletons may ask for input several times. They even have a looping mechanism in
which you will be asked for input as long as you are willing to furnish it. An example would
be multiple “else if” conditions. You can recognize this situation by a prompt ending in
〈RET〉, C-g or C-h. This means that entering an empty string will simply assume that you
are finished. Typing quit on the other hand terminates the loop but also the rest of the
skeleton, e.g. an “else” clause is skipped. Only a syntactically necessary termination still
gets inserted.

Chapter 2: Wrapping Skeletons Around Existing Text 3

2 Wrapping Skeletons Around Existing Text

Often you will find yourself with some code that for whatever reason suddenly becomes
conditional. Or you have written a bit of text and want to put it in the middle of a form
letter. Skeletons provide a means for accomplishing this, and can even, in the case of
programming languages, reindent the wrapped code for you.

Skeleton commands take an optional numeric prefix argument (see 〈undefined〉
[(emacs)Arguments], page 〈undefined〉). This is interpreted in two different ways
depending on whether the prefix is positive, i.e. forwards oriented or negative, i.e.
backwards oriented.

A positive prefix means to wrap the skeleton around that many following words. This
is accomplished by putting the words there where the point is normally left after that
skeleton is inserted (see Chapter 1 [Using Skeletons], page 2). The point (see 〈undefined〉
[(emacs)Point], page 〈undefined〉) is left at the next interesting spot in the skeleton instead.

A negative prefix means to do something similar with that many precedingly marked
interregions (see 〈undefined〉 [(emacs)Mark], page 〈undefined〉). In the simplest case, if you
type M-- just before issuing the skeleton command, that will wrap the skeleton around the
current region, just like a positive argument would have wrapped it around a number of
words.

Smaller negative arguments will wrap that many interregions into successive interesting
spots within the skeleton, again leaving the point at the next one. We speak about inter-
regions rather than regions here, because we treat them in the order they appear in the
buffer, which coincides with successive regions only if they were marked in order.

That is, if you marked in alphabetical order the points A B C [] (where [] represents the
point) and call a skeleton command with M-- 3, you will wrap the text from A to B into the
first interesting spot of the skeleton, the text from B to C into the next one, the text from
C to the point into the third one, and leave the point in the fourth one. If there are less
marks in the buffer, or if the skeleton defines less interesting points, the surplus is ignored.

If, on the other hand, you marked in alphabetical order the points [] A C B, and call a
skeleton command with M-- 3, you will wrap the text from point to A, then the text from A
to C and finally the text from C to B. This is done because the regions overlap and Emacs
would be helplessly lost if it tried to follow the order in which you marked these points.

Chapter 3: Skeletons as Abbrev Expansions 4

3 Skeletons as Abbrev Expansions

Rather than use a key binding for every skeleton command, you can also define an
abbreviation (see 〈undefined〉 [(emacs)Defining Abbrevs], page 〈undefined〉) that will expand
(see 〈undefined〉 [(emacs)Expanding Abbrevs], page 〈undefined〉) into the skeleton.

Say you want ‘ifst’ to be an abbreviation for the C language if statement. You will tell
Emacs that ‘ifst’ expands to the empty string and then calls the skeleton command. In
Emacs-lisp you can say something like (define-abbrev c-mode-abbrev-table "ifst" ""
’c-if). Or you can edit the output from M-x list-abbrevs to make it look like this:

(c-mode-abbrev-table)
"if" 0 "" c-if

(Some blank lines of no semantic significance, and other abbrev tables, have been omitted.)

Chapter 4: Skeleton Language 5

4 Skeleton Language

Skeletons are an shorthand extension to the Lisp language, where various atoms di-
rectly perform either actions on the current buffer or rudimentary flow control mechanisms.
Skeletons are interpreted by the function skeleton-insert.

A skeleton is a list starting with an interactor, which is usually a prompt-string, or
nil when not needed, but can also be a Lisp expression for complex read functions or
for returning some calculated value. The rest of the list are any number of elements as
described in the following table:

"string", ?c, ?\c
Insert string or character. Literal strings and characters are passed through
skeleton-transformation when that is non-nil.

?\n Insert a newline and align under current line. Use newline character ?\n to
prevent alignment.

_ Interesting point. When wrapping skeletons around successive regions, they are
put at these places. Point is left at first _ where nothing is wrapped.

> Indent line according to major mode. When following element is _, and there
is a interregion that will be wrapped here, indent that interregion.

& Logical and. Iff preceding element moved point, i.e. usually inserted something,
do following element.

| Logical xor. Iff preceding element didn’t move point, i.e. usually inserted
nothing, do following element.

-number Delete preceding number characters. Depends on value of skeleton-untabify.

() or nil Ignored.

lisp-expression
Evaluated, and the return value is again interpreted as a skeleton element.

str A special variable that, when evaluated the first time, usually prompts for input
according to the skeleton’s interactor. It is then set to the return value resulting
from the interactor. Each subskeleton has its local copy of this variable.

v1, v2 Skeleton-local user variables.

’expression
Evaluate following lisp expression for its side-effect, but prevent it from being
interpreted as a skeleton element.

skeleton Subskeletons are inserted recursively, not once, but as often as the user enters
something at the subskeletons interactor. Thus there must be a str in the
subskeleton. They can also be used non-interactively, when prompt is a lisp-
expression that returns successive list-elements.

resume: Ignored. Execution resumes here if the user quits during skeleton interpretation.

quit A constant which is non-nil when the resume: section was entered because
the user quit.

Chapter 4: Skeleton Language 6

Some modes also use other skeleton elements they themselves defined. For example in
shell script mode’s skeletons you will find < which does a rigid indentation backwards, or in
CC mode’s skeletons you find the self-inserting elements { and }. These are defined by the
buffer-local variable skeleton-further-elements which is a list of variables bound while
interpreting a skeleton.

The macro define-skeleton defines a command for interpreting a skeleton. The first
argument is the command name, the second is a documentation string, and the rest is an
interactor and any number of skeleton elements together forming a skeleton. This skeleton
is assigned to a variable of the same name as the command and can thus be overridden
from your ‘~/.emacs’ file (see 〈undefined〉 [(emacs)Init File], page 〈undefined〉).

Chapter 5: Inserting Matching Pairs of Characters 7

5 Inserting Matching Pairs of Characters

Various characters usually appear in pairs. When, for example, you insert an open
parenthesis, no matter whether you are programming or writing prose, you will surely enter
a closing one later. By entering both at the same time and leaving the cursor inbetween,
Emacs can guarantee you that such parentheses are always balanced. And if you have a
non-qwerty keyboard, where typing some of the stranger programming language symbols
makes you bend your fingers backwards, this can be quite relieving too.

This is done by binding the first key (see 〈undefined〉 [(emacs)Rebinding], page 〈unde-
fined〉) of the pair to skeleton-pair-insert-maybe instead of self-insert-command. The
“maybe” comes from the fact that this at-first surprising behavior is initially turned off. To
enable it, you must set skeleton-pair to some non-nil value. And even then, a positive
argument (see 〈undefined〉 [(emacs)Arguments], page 〈undefined〉) will make this key behave
like a self-inserting key (see 〈undefined〉 [(emacs)Inserting Text], page 〈undefined〉).

While this breaks with the stated intention of always balancing pairs, it turns out that
one often doesn’t want pairing to occur, when the following character is part of a word. If
you want pairing to occur even then, set skeleton-pair-on-word to some non-nil value.

Pairing is possible for all visible characters. By default the parenthesis ‘(’, the square
bracket ‘[’, the brace ‘{’, the pointed bracket ‘<’ and the backquote ‘‘’ all pair with the
symmetrical character. All other characters pair themselves. This behavior can be modified
by the variable skeleton-pair-alist. This is in fact an alist of skeletons (see Chapter 4
[Skeleton Language], page 5), with the first part of each sublist matching the typed charac-
ter. This is the position of the interactor, but since pairs don’t need the str element, this
is ignored.

Some modes have bound the command skeleton-pair-insert-maybe to relevant keys.
These modes also configure the pairs as appropriate. For example, when typing english
prose, you’d expect the backquote (‘‘’) to pair with the quote (‘’’), while in Shell script
mode it must pair to itself. They can also inhibit pairing in certain contexts. For example
an escaped character stands for itself.

Chapter 6: Autoinserting Text in Empty Files 8

6 Autoinserting Text in Empty Files

M-x auto-insert will put some predefined text at the beginning of the buffer. The main
application for this function, as its name suggests, is to have it be called automatically every
time an empty, and only an empty file is visited. This is accomplished by putting (add-hook
’find-file-hooks ’auto-insert) into your ‘~/.emacs’ file (see 〈undefined〉 [(emacs)Init
File], page 〈undefined〉).

What gets inserted, if anything, is determined by the variable auto-insert-alist. The
cars of this list are each either a mode name, making an element applicable when a buffer
is in that mode. Or they can be a string, which is a regexp matched against the buffer’s
file name. In that way different kinds of files that have the same mode in Emacs can be
distinguished. The cars may also be cons cells consisting of mode name or regexp as above
and an additional descriptive string.

When a matching element is found, the cdr says what to do. It may be a string, which
is a file name, whose contents are to be inserted, if that file is found in the directory auto-
insert-directory or under a absolute file name. Or it can be a skeleton (see Chapter 4
[Skeleton Language], page 5) to be inserted.

It can also be a function, which allows doing various things. The function can simply
insert some text, indeed, it can be skeleton command (see Chapter 1 [Using Skeletons],
page 2). It can be a lambda function which will for example conditionally call another
function. Or it can even reset the mode for the buffer. If you want to perform several
such actions in order, you use a vector, i.e. several of the above elements between square
brackets (‘[. . .]’).

By default C and C++ headers insert a definition of a symbol derived from the filename
to prevent multiple inclusions. C and C++ sources insert an include of the header. Makefiles
insert the file makefile.inc if it exists.

TeX and bibTeX mode files insert the file tex-insert.tex if it exists, while LaTeX mode
files insert a typical \documentclass frame. Html files insert a skeleton with the usual
frame.

Ada mode files call the Ada header skeleton command. Emacs lisp source files insert
the usual header, with a copyright of your environment variable $ORGANIZATION or else
the FSF, and prompt for valid keywords describing the contents. Files in a ‘bin’ directory
for which Emacs could determine no specialised mode (see 〈undefined〉 [(emacs)Choosing
Modes], page 〈undefined〉) are set to Shell script mode.

In Lisp (see 〈undefined〉 [(emacs)Init File], page 〈undefined〉) you can use the function
define-auto-insert to add to or modify auto-insert-alist. See its documentation with
C-h f auto-insert-alist.

The variable auto-insert says what to do when auto-insert is called non-interactively,
e.g. when a newly found file is empty (see above):

nil Do nothing.

t Insert something if possible, i.e. there is a matching entry in auto-insert-
alist.

other Insert something if possible, but mark as unmodified.

Chapter 6: Autoinserting Text in Empty Files 9

The variable auto-insert-query controls whether to ask about inserting something.
When this is nil, inserting is only done with M-x auto-insert. When this is function,
you are queried whenever auto-insert is called as a function, such as when Emacs visits an
empty file and you have set the above-mentioned hook. Otherwise you are alway queried.

When querying, the variable auto-insert-prompt’s value is used as a prompt for a
y-or-n-type question. If this includes a ‘%s’ construct, that is replaced by what caused the
insertion rule to be chosen. This is either a descriptive text, the mode-name of the buffer
or the regular expression that matched the filename.

Chapter 7: Inserting and Updating Copyrights 10

7 Inserting and Updating Copyrights

M-x copyright is a skeleton inserting command, that adds a copyright notice at the
point. The “by” part is taken from your environment variable $ORGANIZATION or if that
isn’t set you are prompted for it. If the buffer has a comment syntax (see 〈undefined〉
[(emacs)Comments], page 〈undefined〉), this is inserted as a comment.

M-x copyright-update looks for a copyright notice in the first copyright-limit char-
acters of the buffer and updates it when necessary. The current year (variable copyright-
current-year) is added to the existing ones, in the same format as the preceding year,
i.e. 1994, ’94 or 94. If a dash-separated year list up to last year is found, that is extended
to current year, else the year is added separated by a comma. Or it replaces them when
this is called with a prefix argument. If a header referring to a wrong version of the GNU
General Public License (see 〈undefined〉 [(emacs)Copying], page 〈undefined〉) is found, that
is updated too.

An interesting application for this function is to have it be called automatically ev-
ery time a file is saved. This is accomplished by putting (add-hook ’write-file-hooks
’copyright-update) into your ‘~/.emacs’ file (see 〈undefined〉 [(emacs)Init File], page 〈un-
defined〉).

The variable copyright-query controls whether to update the copyright or whether to
ask about it. When this is nil updating is only done with M-x copyright-update. When
this is function you are queried whenever copyright-update is called as a function, such
as in the write-file-hooks feature mentioned above. Otherwise you are always queried.

Chapter 8: Making Interpreter Scripts Executable 11

8 Making Interpreter Scripts Executable

Various interpreter modes such as Shell script mode or AWK mode will automatically
insert or update the buffer’s magic number, a special comment on the first line that makes
the exec systemcall know how to execute the script. To this end the script is automatically
made executable upon saving, with executable-chmod as argument to the system chmod
command. The magic number is prefixed by the value of executable-prefix.

Any file whose name matches executable-magicless-file-regexp is not furnished
with a magic number, nor is it made executable. This is mainly intended for resource files,
which are only meant to be read in.

The variable executable-insert says what to do when executable-set-magic is called
non-interactively, e.g. when file has no or the wrong magic number:

nil Do nothing.

t Insert or update magic number.

other Insert or update magic number, but mark as unmodified.

The variable executable-query controls whether to ask about inserting or updating the
magic number. When this is nil updating is only done with M-x executable-set-magic.
When this is function you are queried whenever executable-set-magic is called as a
function, such as when Emacs puts a buffer in Shell script mode. Otherwise you are alway
queried.

M-x executable-self-display adds a magic number to the buffer, which will turn it
into a self displaying text file, when called as a Un*x command. The “interpreter” used is
executable-self-display with argument ‘+2’.

Chapter 9: Maintaining Timestamps in Modified Files 12

9 Maintaining Timestamps in Modified Files

The time-stamp command can be used to update automatically a template in a file with
a new time stamp every time you save the file. Customize the hook write-file-hooks to
add the function time-stamp to arrange this.

The time stamp is updated only if the customizable variable time-stamp-active is on,
which it is by default; the command time-stamp-toggle-active can be used to toggle it.
The format of the time stamp is set by the customizable variable time-stamp-format.

The variables time-stamp-line-limit, time-stamp-start, time-stamp-end,
time-stamp-count, and time-stamp-inserts-lines control finding the template. Do
not change these in your init file or you will be incompatible with other people’s files. If
you must change them, do so only in the local variables section of the file itself.

Normally the template must appear in the first 8 lines of a file and look like one of the
following:

Time-stamp: <>
Time-stamp: " "

The time stamp is written between the brackets or quotes:
Time-stamp: <1998-02-18 10:20:51 gildea>

Chapter 10: QuickURL: Inserting URLs Based on Text at Point 13

10 QuickURL: Inserting URLs Based on Text at
Point

M-x quickurl can be used to insert a URL into a buffer based on the text at point. The
URLs are stored in an external file defined by the variable quickurl-url-file as a list of
either cons cells of the form (key . URL) or lists of the form (key URL comment). These
specify that M-x quickurl should insert URL if the word key is at point, for example:

(("FSF" "http://www.fsf.org/" "The Free Software Foundation")
("emacs" . "http://www.emacs.org/")
("hagbard" "http://www.hagbard.demon.co.uk" "Hagbard’s World"))

M-x quickurl-add-url can be used to add a new key/URL pair. M-x quickurl-list

provides interactive editing of the URL list.

Chapter 11: Tempo: Flexible Template Insertion 14

11 Tempo: Flexible Template Insertion

The Tempo package provides a simple way to define powerful templates, or macros, if
you wish. It is mainly intended for, but not limited to, programmers to be used for creating
shortcuts for editing certain kinds of documents.

A template is defined as a list of items to be inserted in the current buffer at point.
Some can be simple strings, while others can control formatting or define special points
of interest in the inserted text. M-x tempo-backward-mark and M-x tempo-forward-mark

can be used to jump between such points.
More flexible templates can be created by including lisp symbols, which will be evaluated

as variables, or lists, which will be evaluated as lisp expressions. Automatic completion of
specified tags to expanded templates can be provided.

See the documentation for tempo-define-template for the different items that can be
used to define a tempo template with a command for inserting it.

See the commentary in ‘tempo.el’ for more information on using the Tempo package.

Chapter 12: ‘Hippie’ Expansion 15

12 ‘Hippie’ Expansion

M-x hippie-expand is a single command providing a variety of completions and expan-
sions. Called repeatedly, it tries all possible completions in succession.

Which ones to try, and in which order, is determined by the contents of the customiz-
able option hippie-expand-try-functions-list. Much customization of the expansion
behavior can be made by changing the order of, removing, or inserting new functions in this
list. Given a positive numeric argument, M-x hippie-expand jumps directly that number
of functions forward in this list. Given some other argument (a negative argument or just
C-u) it undoes the tried completion.

See the commentary in ‘hippie-exp.el’ for more information on the possibilities.
Typically you would bind hippie-expand to M-/ with dabbrev-expand, the standard

binding of M-/, providing one of the expansion possibilities.

Concept Index 16

Concept Index

A
autoinserting . 8

C
copyrights . 10

E
executables . 11

I
inserting pairs . 7

P
pairs . 7

S
skeleton language . 5

skeletons . 2

skeletons as abbrevs . 4

T
templates . 14

timestamps . 12

U
URLs . 13

using skeletons . 2

W
wrapping skeletons . 3

Command Index 17

Command Index

A
auto-insert . 8

C
copyright . 10

copyright-update . 10

D
define-auto-insert . 8

define-skeleton . 6

E
executable-self-display 11

executable-set-magic . 11

H

hippie-expand . 15

Q
quickurl . 13

quickurl-add-url . 13

quickurl-list . 13

S
skeleton-further-elements 6

skeleton-insert . 5

skeleton-pair-insert-maybe 7

T
tempo-backward-mark . 14

tempo-define-template . 14

tempo-forward-mark . 14

time-stamp . 12

Variable Index 18

Variable Index

A
auto-insert . 8

auto-insert-alist . 8

auto-insert-prompt . 9

auto-insert-query . 9

C
copyright-current-year . 10

copyright-limit . 10

copyright-query . 10

E
executable-chmod . 11

executable-insert . 11

executable-magicless-file-regexp 11

executable-prefix . 11

executable-query . 11

H
hippie-expand-try-functions-list 15

Q
quickurl-url-file . 13

S
skeleton-pair . 7

skeleton-pair-alist . 7

skeleton-pair-on-word . 7

skeleton-transformation . 5

T
time-stamp-active . 12

time-stamp-count . 12

time-stamp-end . 12

time-stamp-format . 12

time-stamp-inserts-lines 12

time-stamp-line-limit . 12

time-stamp-start . 12

W
write-file-hooks . 12

i

Table of Contents

Autotyping . 1

1 Using Skeletons . 2

2 Wrapping Skeletons Around Existing Text . . 3

3 Skeletons as Abbrev Expansions 4

4 Skeleton Language . 5

5 Inserting Matching Pairs of Characters 7

6 Autoinserting Text in Empty Files 8

7 Inserting and Updating Copyrights 10

8 Making Interpreter Scripts Executable 11

9 Maintaining Timestamps in Modified Files
. 12

10 QuickURL: Inserting URLs Based on Text at
Point . 13

11 Tempo: Flexible Template Insertion 14

12 ‘Hippie’ Expansion . 15

Concept Index . 16

Command Index . 17

Variable Index . 18

ii

